2022. 12. 1. 11:10ㆍ노트/Algorithm : 알고리즘
Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle, and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Implement the MyCircularQueue class:
- MyCircularQueue(k) Initializes the object with the size of the queue to be k.
- int Front() Gets the front item from the queue. If the queue is empty, return -1.
- int Rear() Gets the last item from the queue. If the queue is empty, return -1.
- boolean enQueue(int value) Inserts an element into the circular queue. Return true if the operation is successful.
- boolean deQueue() Deletes an element from the circular queue. Return true if the operation is successful.
- boolean isEmpty() Checks whether the circular queue is empty or not.
- boolean isFull() Checks whether the circular queue is full or not.
You must solve the problem without using the built-in queue data structure in your programming language.
Example 1:
Input
["MyCircularQueue", "enQueue", "enQueue", "enQueue", "enQueue", "Rear", "isFull", "deQueue", "enQueue", "Rear"]
[[3], [1], [2], [3], [4], [], [], [], [4], []]
Output
[null, true, true, true, false, 3, true, true, true, 4]
Explanation
MyCircularQueue myCircularQueue = new MyCircularQueue(3);
myCircularQueue.enQueue(1); // return True
myCircularQueue.enQueue(2); // return True
myCircularQueue.enQueue(3); // return True
myCircularQueue.enQueue(4); // return False
myCircularQueue.Rear(); // return 3
myCircularQueue.isFull(); // return True
myCircularQueue.deQueue(); // return True
myCircularQueue.enQueue(4); // return True
myCircularQueue.Rear(); // return 4
Constraints:
- 1 <= k <= 1000
- 0 <= value <= 1000
- At most 3000 calls will be made to enQueue, deQueue, Front, Rear, isEmpty, and isFull.
class MyCircularQueue(object):
def __init__(self, k):
"""
:type k: int
"""
self.q = [None] * k
self.maxlen = k
self.p1 = 0
self.p2 = 0
def enQueue(self, value):
"""
:type value: int
:rtype: bool
"""
if self.q[self.p2] is None:
self.q[self.p2] = value
self.p2 = ( self.p2 + 1 ) % self.maxlen
return True
else:
return False
def deQueue(self):
"""
:rtype: bool
"""
if self.q[self.p1] is None:
return False
else:
self.q[self.p1] = None
self.p1 = ( self.p1 + 1 ) % self.maxlen
return True
def Front(self):
"""
:rtype: int
"""
return -1 if self.q[self.p1] is None else self.q[self.p1]
def Rear(self):
"""
:rtype: int
"""
return -1 if self.q[self.p2 - 1] is None else self.q[self.p2 - 1]
def isEmpty(self):
"""
:rtype: bool
"""
return self.p1 == self.p2 and self.q[self.p1] is None
def isFull(self):
"""
:rtype: bool
"""
return self.p1 == self.p2 and self.q[self.p1] is not None
# Your MyCircularQueue object will be instantiated and called as such:
# obj = MyCircularQueue(k)
# param_1 = obj.enQueue(value)
# param_2 = obj.deQueue()
# param_3 = obj.Front()
# param_4 = obj.Rear()
# param_5 = obj.isEmpty()
# param_6 = obj.isFull()
'노트 > Algorithm : 알고리즘' 카테고리의 다른 글
[leetcode] 23. Merge k Sorted Lists (0) | 2022.12.06 |
---|---|
[leetcode] 641. Design Circular Deque (0) | 2022.12.06 |
[leetcode] 225. Implement Stack using Queues (0) | 2022.11.30 |
[leetcode] 232. Implement Queue using Stacks (0) | 2022.11.30 |
[leetcode] 739. Daily Temperatures (0) | 2022.11.28 |